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INFORMATIVE QUANTILE FUNCTIONS AND
IDENTIFICATION OF PROBABILITY DISTRIBUTION TYPES

by Emanuel Parzen

Department of Statistics
Texas A&M University

\ Abstract

\':

.\JA problem.of great importance to statistical data
analysts is quick identification of possible probability
distributions for observed data, and classification of tail
behavior of probability distributions. This paper discusses
the informative quantile function IQ(u) = {Q(u) - Q(0.5)} =
2{Q(0.75) - Q(0.25)}, and its use to identify probability models

for observed data and its use to provide concepts of

~

)v’"}epresentative distributions"y;iich illustrate the different

types of shapes and tail behavior that real distributions can
have. This paper also discusses estimators of tail exponents;
they can be used to identify outlying data values, and more
centrally to identify possible'distributions to fit to data.
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0. Prologue: keys, two-keys, and statistical signals

This paper introduces the informative quantile function;
its definition is probability based, its properties can be
studied both mathematically and empirically, and it provides
unified definitions and practical estimators of the tail types
of probability distributions that can fit an observed batch of
data. 1Illustrative tables of tail values of informative
quantile functions of familiar distributions are given; they
provide new types of keys (and two-keys) for exploratory
data analysis of a (random) sample (of a random variable).

A key for exploratory data analysis is defined to be a
method of data detection by which researchers can familiarize
ourselves "with the data, get a rough idea of potential
problems, and look for both obvious and subtle clues about
the process that generated the data and the process that
processed the data before we got to see it" [Welsch commenting
on Parzen (1979)]). When a key is based on concepts of
probability theory (and thus ultimately also provides methods
of data inference and confirmatory data anlaysis), we call it
a two-key.

Keys which are also two-keys provide statistical signals.
One important role of numerical statistical signals is to be
appended to statistical graphics to help guide the Viewer's
attention to the graphical statistical signals (significant

features of the graphs). In support of the proposition that the
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best keys are two-keys, we conclude with a statement by

W. E. Deming entitled ''Statistical Work and Computers." (We

do not know where it was published, and believe it to have been

written in the early 1970's).

The feature that distinguishes the statistician
from other professions is his use of the theory of
probability. The statistician requires knowledge
of statistical theory. To fulfill his duties in
professional practice, he must distinguish between
knowledge and wisdom. He is a scientist, but also
an artist. He requires wisdom to make a good choice
of problem and a choice of statistical procedure
that will be valid and feasible under the

circumstances.
u The computer can be the statistician's servant,
though many people are content if it is the other

way around. Many firms today have magnificent
information systems, but too often these systems
fail to present information as wisdom. The

K) statistician, in his aim to find causes of variation
in product (synonymous with poor quality and high
costs), may use data from an information system,
but he adapts the system to calculate statistical
signals. It is more important to have a system to
improve performance than to have a system that
merely tells us where we are now. The statistician
transforms information into a living force for the
advancement of knowledge and for improvement of
quality and output, industrial and agricultural.




1. Quantile and sample quantile functions

Various aspects of the probability distribution of a

random variable X are described by its:

distribution function F(x) = Pr[X<x], -w<x<o ;
probability density f(x) = F'(x), —o<X<®
quantile function Q(u) = F'l(u), O<u<l ;
quantile density function qu) = Q' (v, O<u<l ;

density-quantile function fQ(u) = fF'l(u)) = {q(u)}'1

O<u<l
score function J(u) = -(£fQ) '(u) , 0O<u<l
Let X, xz,...,xn be a data set. The keys we propose, to

gain insight into the processes generating the data, become two-
keys when we assume that the data batch is a random sample of a
random variable X. The sample distribution function %(x) and

sample quantile function 6(u) are defined in terms of the order

statistics X; < X, < ... <X = of the sample:
F(x) = 4 ;
F(x) =5+ X0 2% < X(g41)n ;

Q) = Xy, e cd




In practice we prefer to use a sample quantile function Q(u)

which is piecewise linear between the values

P =Xy, . =l

For graphical data analysis, we transform 6(u) to a
normalized version Ié(u), called the sample informative
quantile function. The value of Ia(u), as u tends to 0 and 1,
provide diagnostic measures of the type of probability

distribution. An important classification of '"type'" is in

terms of tail exponents.




2. Tail Exponents Classification of Probability Laws

From extreme value theory, statisticians have long realized
that it is useful to classify distributions according to their
tail behavior (behavior of F(x) as x tends to + *). It is usual
to distinguish three main types of distributions, called (1)
limited, (2) exponential, and (3) algebraic. This classification
can also be expressed in terms of the density quantile function
fQ(u); we call the types short, medium, and long tail.

A reasonable assumption about the distributions that occur
in practice is that their density-quantile functions are

regularly varying in the sense that there exist tail exponents

a and ay such that, as u-+0,

o (11

fQw = u Lo , £Q(-w) = u b Ly
where Lj(u) for j=0,1 is a slowly varying function.

A function L(u), O<u<l is usually defined to be slowly
varying as u+0 if, for every y in O<y<l, L(yu)/L(u) + 1 or
log L(yu) - log L(u) + 0 . For estimation of tail exponents

we will require further that, as u-+0,
fi {log L(yu) - log L(u)} dy - 0

which we call intgggallzkslowly varying. An example of a slowly

'1}8; this is proved in section 9.;

varying function is L(u) = {log u




Classification of tail behavior of probability laws

A probability law has a left tail type and a r‘ght tail
‘type depending on the value of g and 0y - If o is the tail

exponent, we define:

1 a <0 super short tail
0 <a<l short tail
a =1 medium tail
a>1 long tail

Medium tailed distributions are further classified by the value

of J*¥ = 1lim J(u):

a=1 , J*¥x=20 medium long tail
a=1 , 0 < J* < » medium-medium tail
a=1 , Jk=o medium-short tail

One immediate insight into the meaning of tail behavior is

provided by the hazard function

h(x) = £(x) : {1-F(x)}

with hazard quantile function hQ(u) = £Q(u) : l-u. The convergencé

behavior of h(x) as x+» is the same as that of hQ(u) as u-+1l.

From the definitions one sees that h* = lim h(x) satisfies

X-+»o0




h* = = (increasingi?azard rate) Short or medium-short
ta

O<h¥*<ew (constant hazard rate) Medium-medium tail

h* = 0 (decreasing hazard rate) Long or medium-long

tail

.
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3. Unitized and Informative Quantile Functions

If one can define "universal'" location and scale
parameters, denoted Ul and 01 respectively, then one can define
a normalization of the quantile function which depends only

on its shape (and is independent of location and scale) by

Q(u) - ug
Q) = ———=
1 9
We propose
up = Q(0.5), o = Q'(0.5) = q(0.5)

We call Ql(u) the unitized quantile function.

One can distinguish three kinds of estimators of parameters

[such as Hy and 01]: fully non-parametric [denoted ;1 and
;1], fully parametric [denoted ;1 and gll.and functional
[estimators ﬁl and 61 which are the parameters of smoothed
quantile functions Q(u) obtained by smoothing the raw or fully
non-parametric estimator 6(u)]. The shape of Q(u) must be
inferred before one can efficiently estimate u and o using fully
parametric (or robust parametric) estimators.

A fully non-parametric estimator of Q(0.5) is 6(0.5). A
fully non-parametric estimator of q(0.5) is more difficult to
define. We therefore consider quick and dirty approximators of

q(0.5) of the form




s = 0.5+ p) - Q.5 - p)
P 2p

where 0<p<0.5. We usually take p = 0.25; then we approximate
q(0.5) by

99.25 = 2{Q(0.75) - Q(0.25)}
We call

IQ(u) = éu).;5 9'3

the informative quantile function.

We compute IQ(u), but graphically we plot the truncated

informative quantile function

TIQ(u) = -1 if 1IQ(u) < -1,

= 1 if IQ(u) > 1,

f

IQ(u) if [IQ(u)| < 1.

In addition to the plot of TIQ(u), we report the values of IQ(u)
at u=0.01, 0.05, 0.10, 0.25, 0.75, 0.90, 0.95, 0.99. Truncating
the values of IQ(u) in our plot enables us to see the 'middle"

of the distribution. The ends (tails) of the distributions are

described numerically by the extreme values of IQ(u).
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For convenience in seeing at a glance in a plot of IQ(u)
its behavior, especially as u tends to 0 and 1, we plot on the
same graph the IQ(u) of a uniform distribution (it is a straight
line with values -0.5 and 0.5 at u = 0 and 1 respectively).

Example: Super Short Distributions. An imporant example

of a super-short distribution (a<0) is X = -cos nU where U is
uniform [0,1]. Since -cos mu is an increasing function of u,
the quantile function of X is Q(u) = -cos mu, with quantile

density and density-quantile

sin mu m
q(u) = =F— ; QW) = s wa-

As u+0, fQ(u)~ u-1 so ag -1. The distribution is symmetric,

in the sense that q(l-u) q(u); therefore a; = -1. The
interquartile range IQR = vZ ; the informative quantile function
is IQ(u) = (-.35) cos mu. Therefore IQ(0) = -.35, IQ(l) = .35.
These values are taken as typical values of super-short

distributions.




Examples of theoretical informative quantile functions

A normal distribution is defined in terms of the standard

normal density ¢(x) and distribution ¢(x),

1 1.2 .
(x) = — exp - y (%) = dy;
¢ P - 5 X (x) = [ ¢(y)dy

m

a distribution F(x) is called normal when it can be represented

A Y

Fo = &, £ = L &y

with quantile function
-1
Q(u) = u+ 0 ¢ “(u).

The parameters My and o, are related to y and ¢ by up = and
o] = o/Zn . The unitized normal density (for which o) = 1) has

density
.2
£,(x) = VI o(x /IT) = e nx

which is Stigler's proposal for a standardized normal density
[Stigler (1982)].

An exponential distribution has density

£ =2, £ =™, x20
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and quantile function
-1
Q(u) = log (1-u)
Although its mean equals o, we regard o as a scale parameter
rather than a location parameter. The parameters My, 07 and
99 25 satisfy
ul = 0 lOg 2 = (.69) g, 01 = 20 H 00‘25 = 2.20

The unitized and informative exponential quantile functions are

Ql(u) = -0.5 log 2(1-u)

IQ(u) = -0.45 log 2(1l-u)

The possible shapes of informative quantile functions are

best described by plots of the Weibull distribution with

parameter B, which has standard quantile function
Q(u) = {log (l-u)'l}B

Graphs of the information quantile functions of the Weibull

distribution for 8 = .1 (.1) 2.0 are given in the appendix.

il NPT
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5. Outlying data value interpretation of Ié(u)

The sample informative quantile function is defined by
1w = {Q(uw) - Q(0.5)} + 2 IQR

where 16R is the sample interquartile range: IéR = 6(0.75) -
6(0.25). The truncated sample informative quantile function
TI&(u) is defined té be Ia(u) truncated at +1.

Hoaglin, Mosteller, and Tukey (1983, p. 39) introduce
techniques for identifying outlying (or outside) data values

as those lying outside the interval

(Q(0.25) - (1.5) IQR, Q(0.75) + (1.5) IQR)
We regard as outlying data values those lying outside the interval
o (Q(0.5) - 2IQR,  Q(0.5) + 2 IQR)
Outlying data values appear on the plot of TI&(u) as values
truncated to +1. The actual values of outlying data values are
represented by the values of I&(u) for u=0.01, 0.05, 0.10,

0.90, 0.95, 0.99. The next section discusses how these quantities
provide quick and dirty estimators of the tail type of the

distributions that can fit the sample.




Sy
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Other useful numerical diagnostics are estimators of the
IQ-mean ulIQ and IQ-standard-deviation o0IQ, defined by
u -ul

e =3 25 ' olq = °°25

2 are the mean and variance of Q(u). The logarithm

where u and o
(to the base e) of dID is denoted log SDIQ. For a normal
distribution oID = 1/27 and log SDIQ = -1 approximately. A
test that the sample has a Gaussian distribution can be based
on testing if the sample estimator of log SDIQ is significantly

different from -1.
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6. Tables of tail values of informative quantile functions

One use of the informative quantile function I&(u) of a
sample is to determine quickly probability distribution that
might fit the sample. One can readily distinguish whether the
data could be fit by a normal distribution or an exponential
distribution [and thus determine the 'probability of success"
if one were to apply a more formal goodness of fit test].
However no standard parametric model may fit the data, and
statistical data analysis must identify signific¢ant features
of the data '"mon-parametrically".

Statistical scientists are seeking to define concepts which
illustrate the different types of shapes and tail behavior that
real distributions can have. Hoaglin, Mosteller, and Tukey
(1983, p. 316) use language such as "neutral tailed (Gaussian)'
and stretch-tailed (Cauchy)'". To describe the notion of tail
weight, they write that it "expresses how the extreme portion
of the distribution spreads out relative to the width of the

center."” As an index of tail behavior, they introduce (p. 323)
{Q0.9) - Q(0.1)} + {Q(0.75) - Q(0.25)} = 2{IQ(0.9) - IQC0.1)} .

As indices of tail behavior, this paper proposes I&(u)
at u=0.01, 0.05, 0.1, 0.9, 0.95, 0.99. The true values of

these indices for various familiar distributions are given in

the tables. These indices are keys (useful for exploratory

I




data analysis of what's unusual or extraordinary about a data
set) and two-keys (provide estimates of the tail exponents

and tail types of distributions that might have generated the

data).
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Table 6A

Tail Values of Informative Quantile Function IQ(u)

* = Approximate value of u at which IQ(u) = 1.

Standard Distributions

Distribution * u .01 .05 .10 .90 .95 .99

Normal -- -.862 .610 475 .475 .610 .862
Exponential .95 -.311 .292 .268 .732 1.048 1.780
Logistic .99 -1.046 .670 .500 .500 .670 1.046
Double Exp .97 -1.411 .830 .568 .580 .830 1.411
Cauchy .92 -7.955 .578 .769 .769 1.578  7.954
Extreme Value -- -1.346 .828 .599 .382 .465 0.602
Log Normal .91 -.310 .278 .278 .895 1.438 3.178
Super Short -- -.353 . 349 .336 .336 .349 0.353
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* = Approximate

Table 6B

Weibull Q(u) = {log (l-u)~1)}B

value of u at which IQ(u) = 1.

Tail Values of Informative Quantile Function IQ(u)

! 8 * u= .01 .05 .10 .90 .95 .99
.1 -- -1.107 .735 .550 .409 .505 .668
.2 -- -.921 .655 .506 .438 . 549 .743
.3 -- -.777 .585 .466 .468 .595 .826
b -- -.662 .525 .430 .500 .646 .919
.5 11.0 -.571 .473 .396 .534 .701 1.024
.6 .98 -.498 .427 . 366 .570 .760 1.142
.7 .97 -.437 . 387 .338 .607 .824 1.275
.8 .96 -.388 .351 .312 .647 .893 1.424

. .9 .95 -.346 . 320 .295 .689 .967 1.592
1.0 .34 -.311 .292 .273 .732 1.048 1.780
1.1 .93 -.281 .267 .252 .778 1.135 1.993
1.2 .93 -.255 .245 .233 .827 1.229 2,232
1.3 92 -.232 .225 .216 .878 1.331 2.502
1.4 91 -.212 .207 .200 .931 1.440 2.806
1.5 .90 -.195 .191 .185 .987 1.559 3.148
1.6 .89 -.179 .177 .172 1.046 1.687 3.54
1.7 .89 -.165 .163 .159 1.107 1.825 3.969
1.8 .88 -.153 .151 . 147 1.172 1.974 4.459
1.9 .88 -.141 .140 .137 1.240 2.135 5.012
2.0 .87 -.131 .130 .128 1.311 2.309 5.635
2.1 .87 -.121 <121 .119 1.386 2.497 6.338
2.2 .86 -.112 .112 .111 1.464 2.700 7.130
2.3 .86 -.104 .104 .103 1.546 2.919 8.023
2.4 .85 -.097 .097 .096 1.633 3.155 9.031
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Table 6C
Tail Values of Informative Quantile Function IQ(u)
Lognormal Q(u) = exp xo'l(u)
* = Approximate value of u at which IQ(u) = 1.
A * {u= .01 .05 .10 .90 .95 .99
.5 .96 -.500 -.408 -.344 .653 .928 1.600
1 .92 -.310 -.278 -.246 .895 1.438 3.178
1.5 .88 -.203 -.192 -.179 1.223 2.260 6.655
2 .86 -.138 -.134 -.128 1.666 3.594 14.449
2.5 | .84 -.096 -.094 -.092 2.266 5.761 32.083
3 .82 -.067 -.067 -.066 3.077 9.284 72.169
3.5 .81 -.048 -.047 -.047 4.175 15.012 163.511
4 .80 -.034 -.034 -.034 5.661 24.322 371.888
4.5 .80 -.024 -.024 -.024 7.673 39.454 847.538
5 .79 -.017 -.017 -.017 10.398 64.041 --
5.5 .79 -.012 -.012 -.012 14.089 103.988 --
6 .79 -.009 -.009 -.009 19.087 168.886 -~
6.5 .78 -.006 -.006 -.006 25.858 2,4.315 --
7 .78 -.004 -.004 -.004 35.029 445.586 --
7.5 .78 -.003 -.003 -.003 47.452 723.814 -
8 .78 -.002 -.002 -.002 64.280 -- --
]
o . T, T -
N |. - v‘ - »
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3
7. Example of sample informative quantile analysis
A data set extensively analyzed at Bell Telephone
1 Laboratories (and discussed in a recent book on graphical methods

of data analysis by Chambers, Cleveland, Kleinexr, and Tukey,
(1983)) consists of Stamford Conn. Monthly Maximum Ozone levels.
Sample size n=136, sample median ;1 = 80, sample mean ; = 89.7,

twice interquartile range o, = 147.5, and standard deviation

; = 52.1. Rather than reporting the original data Xpoee0 X, we
report (table 7A) the normalized values (Xj-al) + ;1 which are
used to plot Ia(u); a plot of 6(u) is given on p. 15 of Chambers
et al. Numerical statistical signals are provided by the tail

values:

u 0.05 .1 .90 .95

1Q(w) -.38 -.33 .61 .83

By consulting the table of Weibull informative quantile values,
as a first guess of a distribution to fit this data one takes
Weibull with parameter g = 0.8. The graph of Ia(u) in Figure 7A
also suggests to us that a Weibull distribution provides a good
first approximation. How to refine this approximation is a

problem treated by our ONESAM data analysis program.

An alternate approach to modeling this data is to find a
transformation to normality; one would then report as one's
conclusion that cube root of Stamford Ozone data is normally

distributed. We believe that this conclusion must be considered

curve fittiné, while a conclusion that the data is fit by a
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Weibull distribution with B in a specified range represents a

curve fit with scientific insight (which may help to explain

the physical mechanisms generating the data).




. . (n)o1 S$1 3iVNlO¥O ' n $1 vs§S108ay
o~ o't 6°0 90 Lt'o 9°'0 $'0 | ] €0 t'o 10 00
~ Labibdat bbbl 2E e e L R R Lty ST TPy

1
1
1
I
*
1
1
1
1
*
1
1
00
O

$md =t =t Sl Gt St S B b Gt Gt St Dk G Grd ot Dot Pt Pt g S Bwd Pud Pmg Sk Gmg md Dud Dt Omd Put ot Dt Ot S=d St O
[}

o
o0
o

[~

o
o
o

o
0 020 beg 0ot 4 020 =g Pu0 0t BP0 et but 4§ g St Sumd Bt ) God bt et B0 P g Oud Put Bt $a0 et Pt Dmg

St St bt bt Pt Dot Bt ek 20 ot P
[«

Q0crecvccrccncecncvcrccunscacncancscncsssancavencncencnncenaad

'ViVQ QIJNOBONN ‘TYNIDING - IVIINVAD IAILVNEOINI
{9°) 1INB13A ¥03 1S31 - ViVO NOZOTIE

VL NOIA

0080~

009°0-

00T " 0-

000°0




o
o~
t

Ly80°} ¥99Z 0 0°'0 LETT O~ e
6910°4 w92Z°0 0°'0 LETT O~ ce
£S16°0 9L8T°0 6EE0 O~ LETT O~ e
6v68°0 GOEZ 'O 6cCy &- LETT O- ¥
1441 ] LETT'O SLYC G- SOET 0~ ot
1L28°0 LETT'O TS0 O- 0§Z°0- .1
1L29°0 [ {J¥ M) TS0 0- 9L8T°0- 14
€oT8°0 9681 °0 0490°0- TiLT o~ LT
998L°0 6551 °0 01900~ Lyt 0~ 1 .
€6SL°0 6SS1°0 oL b- LYST O~ st
TTEL O 6651 °0 0180 O~ LY8Z 0O~ (]
€LES'O 11120 0190 G~ LYST O~ (4 4
S0c9°0 9SEL ‘0 0190°0- LYST O~ TT
zo19°0 gez: ‘o 99.0°'0- LYeC 0~ 1z
#£09°0 88Zi 0 »180°0-~ LYBZ 0~ ot
»€09°0 ozZL'0 ¥180°0- LY8Z O~ - 8
§90§°0 6760°0 »180°0~ S46T°0-~ 13
1g8v°0 6v60°0 6960°0~ 984¢°0- Ly
arLy 0 ri80°0 6v60°0- 5%€° 0~ L]}
SLyYy'0 9¥L0°'0 801 "0~ »S2€°0- S
WLTY'O 01900 §80} ‘0~ TTEE O~ ”
€oZr-0 SLy0°0 $80) “0- zTee 0~ [}
9EL¥ 0 SLYO'O S804 'O~ §ZSE 0~ T
L6LE'O SLYO'O 88T4 "0~ SZGE O~ b
199¢°0 LOY0'0 88T "0~ 6T6€° 0~ ot
cest- o0 LOY0' O 9s€1 "0~ €6s¢ 0~ [ ]
esre°0 6EE0°0 »TrL O~ 199€°0~ ®
1$0E°0 €0T0°0 5694 °0- L6LE O~ L
1S0€°0 9€10°0 8681 '0- LBLE O~ 9
€98Z'0 9£10°0 8691 '0- L6LE O~ s
(-1.1 2] 0'0 8681 'O- L6LE"O- v

€es8z 0 o0 8684 °0- ¥98€ ‘0- €

b Ly8t'o 00 9964 ' 0- SLyy O- z

Lv8Z°0 o0 TOIT 0- SLbY O- ' :

_ meemecmascceme emacmsecesene  cemememcececar eesmereceeces  cecmeceee

W YILUYNO HLAUNOA HILNVNO QUIML  ¥3ILUVNO ONOJ3S H3ILYVNO iS¥I4  311i3vR0

i ’ NIHLIA

IONINV3IS
SYILUVYND NI SOILSILVIS ¥3QHUO
, ‘¥iVQ G3dNOUDNN ‘TIYNIDINO - 3INIANVNO 3IATLYWNOINI
. (€°) 1n\l3m 404 1531 - ViVO NOZOII3E
N . Vi 319V1




24

8. Super-short distributions as harbingers of bimodality

When the sample informative quantile function indicates a
"super short'" distribution the true distribution may not be a
super-short unimodal distribution, but a bimodal distribution.

The manner in which a super-short distribution may be
indicative of bimodality is indicated by the two-sample problem.
One has a sample of values from a distribution F(x), and a sample
of values from a distribution G(x). When the samples are pooled,
they are regarded as a sample from a distribution H(x) which can
be represented H(x) = A F(x) + (1-1) G(x) where A is the fraction
of the pooled sample from F(x). One often seeks to test the
hypothesis HO: F(x) = G(x). The informative quantile plot of
H(x) 1is super-short when F and G have their modes far apart.

To illustrate the ideas, assume F(x) = ¢(x), G(x) = ¢(x-6),
H(x) = 0.5{¢o(x) + ¢(x-8)}. A random sample from H(x), of size
40 was simulated, for 6§ =1, 2, 3, 4, 5, 6. The observed

values of I&(u) are given in the following table.

6§ u .05 .10 .25 .75 .90 .95
1 -.6566 -.6069 -.2110 .2890 .5005 .6570
2 -.4450 -.3553 -.2044 .2956 .5847 .7258
3 -.4077 -.2801 -.2034 .2966 .5012 .6108
4 -.4586 -.4260 -.2908 .2092 . 3326 .4340
5 -.4350 -.3620 -.2649 .2351 . 4079 .4191
6 -.3228 -.2915 -.1841 .3159 .3795 <4179 :
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Other summary statistics of the samples were
8 Median Interquartile Mean St. Dev. Log
Range IQ IQ SDIQ
1 .62 1.46 .01 .3689 -.997
2 1.10 2,07 .05 . 3347 -1.095
3 .97 2.85 .05 .3024 -1.196
4 2.23 3.96 -.03 .2846 -1.257
5 2.36 4.00 .01 .2900 -1.238
6 2.39 5.28 .05 .2669 -1.321

The values of 16(0.05). 16(0.95) and log SDIQ in the case
§ = 1 indicate a Gaussian distribution. The values of 16(0.05)
. and 15(0.95) in the cases § = 4, 5, 6 indicate a super-short
distribution which leads us to check the quantile functions of
the pooled sample for the possiblity of bimodality which often

indicates that the two samples do not have the same distributions.
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9. Theoretical and empirical formulas for computing tail
exponents

The properties of slowly varying functions are best under-
stood by considering an example.
Lemma L(u) = {log u‘l}B is (integrally) slowly varying

as u+0.

Proof: log L(yu) = B log log (yu)'1 = 8 log {log y"1 + log u”

log L(yu) - log L(u) = 8 log {1 + (log y'lllog u'l)}

|log L(yu) - log L(u)| < B |(log y’lllog u'll

1 + 0 as u -+ 0,

Verify that Ii |log y| dy < » , and 1/log u~
One can conclude that L(u) is slowly varying and also integrally
slowly varying.

The representation of fQ(u) suggests a formula for
computation of tail exponents ag and ay (which may be adapted to
provide estimators from data).

Theorem: Computation of tail exponents

-ay = lim [1 {log £Q(yu) - log £Q(u)} dy
u+0 ©

Equivalently

-ag = lim % /P 1log £Q(t) dt - log £Q(p)
p-.-
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Similarly

o) = 113 /i (log £Q(1-yu) - log £Q(1-w)} dy |
u

1 1
;iT =5 /p 108 fQ(t) dt - log £Q(1-p)

Proof: 1log fQ(u) = a9 log u + log Lo(u),

log £fQ(yu) - log fQ(u) = % log y + log Lo(yu) - log Lo(d
Since ]i log y dy = -1, we conclude that
fi {log £fQ(yu) - log fQ(u)} dy = -ag + o(u)

Similarly one derives formula for aj-

Because the density-quantile and quantile-density functions
are reciprocals, we obtain similar formulas for q(u) which may
be easier to implement in practice:

-Qa

q(u) = u 0 Lo(u) , as u+0 ,

1

q(u) = (l-u)-a Ll(l-u). as u-~l ;

ag = 113 !g {log q(yu) - log q(u)} dy ;
u-+

“1 = 113 Ig {log q(1-yu) - log q(l-u)} dy.
u-+
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For theoretical purposes it is often convenient to compute

tail exponents using formulas such as

ag = lim u 3% log £Q(u)

u+0
- 1ip B JCW
u+0 £Q(u)
ap = lim - (1-w) 75 log £Q(u)
u-+
- (1-uw) J(u)
ol TRW

In practice, we would estimate tail exponents from the
values of fQ(t) at an equispaced grid of points t=j/n,
j=1,2,...,n-1. Let k and n tend to = in such a way that k/n
tends to 0; define

k |
-ag,k = i jzl log £Q(l) - 1og fq(kily

1 n-1 3
9 k™ j-g-klog fQ(n) - log £Q(1-

k+l
=)

Conjectures to be proved are that

ag = lim uO,k

ke

k/n+0
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oy = lim o
1 K-veo 1,k
k/n+0

The rate of convergence can be very slow. If L(u) =

{log u 18 , then

n -1
The theoretical properties and practical implementation

of the foregoing estimators remains to be investigated.

Related estimators are given in Mason (1982) and the papers

referenced there.
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APPENDIX

Informative Quantile Functions of Weibull Distributions with

Parameter B:

Q(u) = {log(l-u)~1}®
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